On the rank of abelian varieties over function fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Rank of Abelian Varieties over Function Fields

Let C be a smooth projective curve defined over a number field k, A/k(C) an abelian variety and (τ, B) the k(C)/k-trace of A. We estimate how the rank of A(k(C))/τB(k) varies when we take a finite Galois k-cover π : C → C defined over k.

متن کامل

L-functions with Large Analytic Rank and Abelian Varieties with Large Algebraic Rank over Function Fields

The goal of this paper is to explain how a simple but apparently new fact of linear algebra together with the cohomological interpretation of L-functions allows one to produce many examples of L-functions over function fields vanishing to high order at the center point of their functional equation. Conjectures of Birch and Swinnerton-Dyer, Bloch, and Beilinson relate the orders of vanishing of ...

متن کامل

Universal Norms on Abelian Varieties over Global Function Fields

We examine the Mazur-Tate canonical height pairing defined between an abelian variety over a global field and its dual. By expressing local factors of this pairing in terms of nonarchimedean theta functions, we show in the case of global function fields that certain of these pairings are annihilated by universal norms coming from Carlitz cyclotomic extensions. Furthermore, for elliptic curves w...

متن کامل

On the Variation of the Rank of Jacobian Varieties on Unramified Abelian Towers over Number Fields

Let C be a smooth projective curve defined over a number field k, X/k(C) a smooth projective curve of positive genus, JX the Jacobian variety of X and (τ, B) the k(C)/k-trace of JX . We estimate how the rank of JX(k(C))/τB(k) varies when we take an unramified abelian cover π : C ′ → C defined over k.

متن کامل

Abelian varieties over finite fields

A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: manuscripta mathematica

سال: 2005

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s00229-005-0597-7